STTT 综述︱澳门科技大学朱依谆团队阐述类风湿性关节炎的新信号通路以及新靶点
RA最初是一种持续的细胞激活状态,导致关节或其他器官的自身免疫[10-11]。该病的临床表现主要发生在滑膜炎症和关节损伤之后。成纤维细胞样滑膜细胞(FLS)在这些病理过程中起着关键作用[12-14]。据报道,RA的进展有三个阶段,包括非特异性炎症阶段,由滑膜中的T细胞活化放大,慢性炎症阶段,以及分别由IL-1、IL-6和TNF-α等细胞因子介导的组织损伤阶段[15-18]。RA的关节肿胀反映了免疫激活引起的滑膜炎症。RA滑膜炎的细胞组成以先天和适应性免疫细胞 (如T细胞、树突状细胞、B细胞、巨噬细胞和破骨细胞) 的积累为特征。免疫反应的促炎和骨破坏因子导致滑膜增厚、血管生成、肌肉萎缩、骨或软骨损伤。最终导致受累关节的各种畸形和关节功能障碍[19-22]。
类风湿性关节炎的疾病进展涉及多种信号转导通路,主要信号通路如图5所示,JAK信号通路、Notch信号通路、MAPK信号通路、Wnt信号通路、PI3K信号通路、SYK信号通路是参与RA过程的主要信号通路。相关信号通常是药物发现的潜在目标。临床上已应用多种JAK抑制剂用于RA 治疗。
表观遗传学是在不改变DNA序列的情况下,基因表达的遗传变化;表观遗传学决定了哪些基因开启或关闭的。与这一过程相关的主要机制包括组蛋白修饰、DNA甲基化和非编码RNA机制[29]。 这些修饰定义了特定的基因表达模式(图6)。遗传和环境因素相互作用,决定了基因的表达,特别是吸烟[30-31],其生活方式与RA的发病机制密切相关[32-34]。幸运的是,这些表观遗传修饰可以被逆转,而控制组蛋白修饰或DNA甲基化的相应酶现在已经被提出作为RA的药物靶点[35-37]。
朱教授团队的研究表明,关节炎大鼠滑膜组织中组蛋白去乙酰化酶HDAC6蛋白水平升高[38]。在动物RA模型中,HDAC抑制剂可以改善关节肿胀和滑膜炎症,并减少RA症状[39-40]。同时,团队还发现,在PDGF诱导的FLS中,组蛋白去甲基化酶JMJD3的表达通过Akt信号通路增加,同时抑制或沉默JMJD3后,FLS的迁移和增殖能力减弱[41]。
此外,朱教授课题组还发现组蛋白甲基转移酶smyd2介导的TRAF2甲基化通过NF-κB信号通路促进炎症性疾病(包括RA)[42]。这也可能为RA治疗策略提供一些见解。
类风湿性关节炎的治疗可以帮助缓解疼痛,减少关节炎症,预防或减缓关节损伤,减少残疾,使患者尽可能活跃。虽然类风湿性关节炎无法治愈,但早期的药物干预可以降低关节损伤的风险和疼痛,并减缓疾病的进展。一般来说,非甾体抗炎药(NSAID)、糖皮质激素(GCs)和病情缓解抗风湿药(DMARDs)应用于RA的临床治疗。
一些用于RA治疗的尖端技术正在出现,例如:利用蛋白降解靶向联合体(PROTAC)技术,靶向蛋白质降解作为一种新的治疗方法,以解决由致病蛋白异常表达引起的疾病, PROTAC分子可以同时结合e3-泛素连接酶和靶蛋白,从而导致靶蛋白的泛素化和降解[52-53]。然而,PROTAC的传递和生物利用度仍然是临床应用的最大障碍[54]。解决这些问题将是未来几年许多实验室的研究重点。PROTAC介导的JAK降解已被认为是一种新的和有前途的类风湿性关节炎治疗策略[55]。此外,纳米颗粒药物传递系统,CRISPR-Cas9基因组编辑技术等技术也被开发用于RA治疗。
尽管风湿关节炎仍然无法治愈,DMARDs的发展使风湿关节炎成为一种普遍可管理的疾病。通过使用不同的DMARDs组合,许多患者症状得到了缓解。然而,迄今为止,仍有大量的患者对现有的治疗方法没有反应,这表明有必要开发新的药物和治疗策略。我们希望在不久的将来,一些临床前药物和策略能够成功地走向临床研究,为RA患者提供更多的选择和个性化治疗方案。
原文链接:https://www.nature.com/articles/s41392-023-01331-9
欢迎加入岚翰生命科学群:文献学习2
【3】肿瘤免疫与新型细胞死亡课题设计及生信分析研讨会( 2023年2月25-26日,腾讯在线会议)【4】全国循证医学Meta分析与网状Meta研讨会(2023年3月4-5日,腾讯在线会议)【5】多组学联合网络药理学及分子对接与实验验证研讨会(2023年2月25-26日,腾讯在线会议)【6】高分SCI文章与标书作图(暨AI软件作图)研讨会(2023年2月25-26日,腾讯在线会议)(延期至:3月24-26日)欢迎加入“岚翰生命科学” ”岚翰生命科学“ 诚聘副主编/编辑/运营岗位 (在线办公)
参考文献(上下滑动阅读)
1 Wysocki, T., Olesińska, M. & Paradowska-Gorycka, A. Current Understanding of an Emerging Role of HLA-DRB1 Gene in Rheumatoid Arthritis-From Research to Clinical Practice. Cells. 9, (2020).
2 van der Helm-van Mil, A. H. et al. An independent role of protective HLA class II alleles in rheumatoid arthritis severity and susceptibility. Arthritis Rheum. 52, 2637-2644, (2005).
3 Weyand, C. M. & Goronzy, J. J. HLA polymorphisms and T cells in rheumatoid arthritis. Int Rev Immunol. 18, 37-59, (1999).
4 McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 365, 2205-2219, (2011).
5 Klein, K. & Gay, S. Epigenetics in rheumatoid arthritis. Curr Opin Rheumatol. 27, 76-82, (2015).
6 Giannini, D. et al. One year in review 2020: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 38, 387-397, (2020).
7 Smolen, J. S. et al. Rheumatoid arthritis. Nat Rev Dis Primers. 4, 18001, (2018).
8 Turesson, C. et al. Extra-articular disease manifestations in rheumatoid arthritis: incidence trends and risk factors over 46 years. Ann Rheum Dis. 62, 722-727, (2003).
9 Conforti, A. et al. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmun Rev. 20, 102735, (2021).
10 Porchas-Quijada, M. et al. IgG Anti-ghrelin Immune Complexes Are Increased in Rheumatoid Arthritis Patients Under Biologic Therapy and Are Related to Clinical and Metabolic Markers. Front Endocrinol (Lausanne). 10, 252, (2019).
11 Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. Nat Immunol. 22, 10-18, (2021).
12 Nygaard, G. & Firestein, G. S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol. 16, 316-333, (2020).
13 Bustamante, M. F., Garcia-Carbonell, R., Whisenant, K. D. & Guma, M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther. 19, 110, (2017).
14 Wu, Z.et al. Fibroblast-like synoviocytes in rheumatoid arthritis: Surface markers and phenotypes. Int Immunopharmacol. 93, 107392, (2021).
15 Marcucci, E. et al. Extra-articular rheumatoid arthritis. Reumatismo. 70, 212-224, (2018).
16 Ridgley, L. A., Anderson, A. E. & Pratt, A. G. What are the dominant cytokines in early rheumatoid arthritis? Curr Opin Rheumatol. 30, 207-214, (2018).
17 McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 7, 429-442, (2007).
18 Mateen, S.et al. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta. 455, 161-171, (2016).
19 Liu, E. & Perl, A. Pathogenesis and treatment of autoimmune rheumatic diseases. Curr Opin Rheumatol. 31, 307-315, (2019).
20 Moudgil, K. D. Advances in the pathogenesis and treatment of autoimmunity. Cell Immunol. 339, 1-3, (2019).
21 Alam, J., Jantan, I. & Bukhari, S. N. A. Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed Pharmacother. 92, 615-633, (2017).
22 Veale, D. J., Orr, C. & Fearon, U. Cellular and molecular perspectives in rheumatoid arthritis. Semin Immunopathol. 39, 343-354, (2017).
23 Wang, R.et al. NAV2 positively modulates inflammatory response of fibroblast-like synoviocytes through activating Wnt/β-catenin signaling pathway in rheumatoid arthritis. Clin Transl Med. 11, e376, (2021).
24 Wang, R.et al. Neuron navigator 2 is a novel mediator of rheumatoid arthritis. Cell Mol Immunol. 18, 2288-2289, (2021).
25 Wang, R.et al. STAT3-NAV2 axis as a new therapeutic target for rheumatoid arthritis via activating SSH1L/Cofilin-1 signaling pathway. Signal Transduct Target Ther. 7, 209, (2022).
26 McNeill, E. M., Roos, K. P., Moechars, D. & Clagett-Dame, M. Nav2 is necessary for cranial nerve development and blood pressure regulation. Neural Dev. 5, 6, (2010).
27 Chakrabarti, S. et al. Sensitization of knee-innervating sensory neurons by tumor necrosis factor-α-activated fibroblast-like synoviocytes: an in vitro, coculture model of inflammatory pain. Pain. 161, 2129-2141, (2020).
28 Jia, W.et al. GATA4 regulates angiogenesis and persistence of inflammation in rheumatoid arthritis. Cell Death Dis. 9, 503, (2018).
29 Oblak, L.et al. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res Rev. 69, 101348, (2021).
30 Chang, K.et al. Smoking and rheumatoid arthritis. Int J Mol Sci. 15, 22279-22295, (2014).
31 Hussain, M. S. & Tripathi, V. Smoking under hypoxic conditions: a potent environmental risk factor for inflammatory and autoimmune diseases. Mil Med Res. 5, 11, (2018).
32 Elzorkany, B. et al. Does smoking affect level of seropositivity in RA? A post-HOC global and inter-country analysis of COMORA cohort. Rheumatol Int. 41, 699-705, (2021).
33 Hedenstierna, L. et al. Effects of alcohol consumption and smoking on risk for RA: results from a Swedish prospective cohort study. RMD Open. 7, (2021).
34 Gudelj Gračanin, A. et al. The effect of smoking on disease activity in rheumatoid arthritis - our experience. Acta Clin Croat. 59, 312-317, (2020).
35 Barik, R. R. & Bhatt, L. K. Emerging epigenetic targets in rheumatoid arthritis. Rheumatol Int. 41, 2047-2067, (2021).
36 Mueller, A. L. et al. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells. 10, (2021).
37 Nair, N., Barton, A. & Wilson, A. G. Cell-specific epigenetic drivers of pathogenesis in rheumatoid arthritis. Epigenomics. 13, 549-560, (2021).
38 Li, M.et al. Sp1 S-Sulfhydration Induced by Hydrogen Sulfide Inhibits Inflammation via HDAC6/MyD88/NF-κB Signaling Pathway in Adjuvant-Induced Arthritis. Antioxidants (Basel). 11, (2022).
39 Chung, Y. L., Lee, M. Y., Wang, A. J. & Yao, L. F. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther. 8, 707-717, (2003).
40 Nishida, K. et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 50, 3365-3376, (2004).
41 . (!!! INVALID CITATION !!! 303).
42 Wu, W.et al. SMYD2-mediated TRAF2 methylation promotes the NF-κB signaling pathways in inflammatory diseases. Clin Transl Med. 11, e591, (2021).
43 Lin, Y. J., Anzaghe, M. & Schülke, S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells. 9, (2020).
44 Davis, J. M., 3rd. The Patient Experience of Drug Side Effects in Rheumatoid Arthritis: Intriguing Data From an Exploratory Online Survey. J Rheumatol, (2022).
45 Albrecht, K. & Müller-Ladner, U. Side effects and management of side effects of methotrexate in rheumatoid arthritis.Clin Exp Rheumatol. 28, S95-101, (2010).
46 Xue, Y., Cohen, J. M., Wright, N. A. & Merola, J. F. Skin Signs of Rheumatoid Arthritis and its Therapy-Induced Cutaneous Side Effects. Am J Clin Dermatol. 17, 147-162, (2016).
47 Hyndman, I. J. Rheumatoid arthritis: past, present and future approaches to treating the disease. Int J Rheum Dis. 20, 417-419, (2017).
48 Wu, W. J.et al. S-propargyl-cysteine attenuates inflammatory response in rheumatoid arthritis by modulating the Nrf2-ARE signaling pathway. Redox Biol. 10, 157-167, (2016).
49 Wu, W.et al. Cystathionine-γ-lyase ameliorates the histone demethylase JMJD3-mediated autoimmune response in rheumatoid arthritis. Cell Mol Immunol. 16, 694-705, (2019).
50 Yu, Y.et al. A novel dendritic mesoporous silica based sustained hydrogen sulfide donor for the alleviation of adjuvant-induced inflammation in rats. Drug Deliv. 28, 1031-1042, (2021).
51 Yu, Y.et al. The Preparation of a Novel Poly(Lactic Acid)-Based Sustained H(2)S Releasing Microsphere for Rheumatoid Arthritis Alleviation. Pharmaceutics. 13, (2021).
52 Neklesa, T. K., Winkler, J. D. & Crews, C. M. Targeted protein degradation by PROTACs. Pharmacol Ther. 174, 138-144, (2017).
53 Martín-Acosta, P. & Xiao, X. PROTACs to address the challenges facing small molecule inhibitors. Eur J Med Chem. 210, 112993, (2021).
54 Saraswat, A. L. et al. Drug delivery challenges and formulation aspects of proteolysis targeting chimera (PROTACs). Drug Discov Today. 28, 103387, (2022).
55 Kargbo, R. B. PROTAC-Mediated Degradation of Janus Kinase as a Therapeutic Strategy for Cancer and Rheumatoid Arthritis. ACS Med Chem Lett. 12, 945-946, (2021).